
INDY-9 RED — MyFoodScan

Draft of Final Report

CS 4850, Section 01/02, Spring 2024

Sharon Perry

Apr 27, 2024

Team Members-

Ibrahima Gueye

Jedae Lisbon

Bri Noel

Victoria Kuswita

Links-

Github: https://github.com/Indy009/myfoodscan_app.git

Website: https://indy009.github.io/

Number of Lines of Code in Project: approximately 3,000

Number of Components in Project: 18 files

https://github.com/Indy009/myfoodscan_app.git
https://indy009.github.io/

Table of Contents

1.0 Introduction..5
1.1 Abstract..5
1.2 Project Goals... 5
1.3 Definitions and Acronyms.. 5
1.4 Assumptions.. 6

2.0 Design Constraints..6
2.1 Environment...6
2.2 User Characteristics.. 6
2.3 System...6
2.4 Assumptions and Dependencies... 6
2.5 General Constraints...7
2.6 Goals and Guidelines.. 7
2.7 Development Methods...7

3.0 Functional Requirements..8
3.1 Phase 1..8

3.1.1 Login and Register..8
3.1.1 Questionnaire..8
3.1.2 Display Home Page with Scan..8
3.1.3 Barcode Scanning...8
3.1.4 Navigate from Home Page to Data Pop-up After Scanning................................8
3.1.5 Navigation Bar.. 8
3.1.6 Navigate from Home Page to User Profile Page.. 8
3.1.7 Navigate from Home Page to Previous History Page... 9
3.1.8 Machine Learning for Recommendation of Similar Items................................... 9

3.2 Phase 2..9
3.2.1 Machine Learning for Compliance Checking.. 9
3.2.2 Additional Menu Options...9
3.2.2 Notification System... 9

4.0 Non-Functional Requirements... 9
4.1 Performance.. 9
4.2 Security..10
4.3 Usability... 10
4.4 Reliability... 10
4.5 Scalability...10

5.0 External Interface Requirements..10
5.1 User Interface Requirements...10

5.1.1 Loading Screen...10
5.1.2 Login Screen...10

5.1.3 Register Screen.. 10
5.1.4 Questionnaire Interface...10
5.1.5 Main Interface..11
5.1.6 Scanner Interface..11
5.1.7 Product Detail Pop-Up Interface..11
5.1.8 View History.. 11
5.1.9 Show/Edit Profile..11

5.2 Software Interface Requirements.. 11
5.3 Communication Interface Requirements..11

6.0 System Overview...12
7.0 Architectural Strategies.. 12

7.1 Choice of Product.. 12
7.2 Reuse of Existing Software Components.. 13
7.3 Future Plans.. 13
7.4 User Interface Paradigm..13
7.5 Error Detection and Recovery... 13

7.6 External Database Management... 14
7.7 Concurrency and Synchronization...14

8.0 System Architecture..14
8.1 Subsystem Architecture...15

9.0 Analysis..16
9.1 Choice of Product.. 16
9.2 Engineering Trade-offs.. 16
9.3 Coding Guidelines and Conventions... 17

10.0 System Design...17
10.1 Frontend Module..17

10.1.1 Home Page.. 17
10.1.2 Scanner..17
10.1.3 User Profile... 17
10.1.4 History Page.. 18
10.1.5 Product Details...18

10.2 Backend Module.. 18
10.2.1 Firebase Authentication.. 18
10.2.2 Firebase Firestore...18
10.2.3 Firebase Cloud Functions... 19

10.3 External API Integration...19
10.3.1 OpenFoodFacts API... 19

10.4 Detailed Subsystem Design...19
11.0 Prototype Design... 20

11.1 Design Process..20

11.1.1 Planning.. 20
11.1.2 Low-Fidelity Prototyping..20
11.1.3 High-Fidelity Prototyping... 21

12.0 Development.. 24
12.1 Major Components of Technology:.. 24

12.1.1 Register Page/ Login Page... 24
12.1.2 Questionnaire Page.. 24
12.1.3 Scanner/Home Page...24
12.1.4 Product Details Pop-Up.. 24
12.1.5 History Page... 25
12.1.6 Profile Page.. 25

12.2 Issues Encountered:.. 25
12.2.1 Questionnaire Page.. 25
12.2.2 Scanner/Home Page...25
12.2.3 Product Details Pop-Up.. 25
12.2.4 History Page... 25
12.2.5 Profile Page.. 26

13.0 Testing.. 26
13.1 Testing the Software.. 26
13.2 Maintaining the Software... 26
13.3 Functional Testing..27
13.4 Non-Functional Testing.. 28
13.5 UI/UX Testing...29

14.0 Version Control..29
15.0 Conclusion... 30
16.0 Glossary... 30
Appendix A...30

Project Overview..30
Features:..31
Final Deliverables:... 31
Milestone Events (Prototypes, Draft Reports, Code Reviews, etc.):..................................... 31
Meeting Schedule Date/Time...32
Collaboration and Communication Plan.. 32
Project Schedule and Task Planning... 32
Version Control Plan.. 32

Appendix B...32
Training:... 33

1.0 Introduction

1.1 Abstract
MyFoodScan is a mobile app that enables users to scan barcodes of various food and drink
items to ensure they are in compliance with their specific dietary needs. Individuals utilize this
application to make a customized profile based on diet, such as vegan, vegetarian, dairy-free,
allergies, etc. MyFoodScan promotes compliance with dietary limitations. The application was
developed with React Native, Expo Go, Google Firebase, using the React Native Camera for
barcode scanning. The OpenFoodFacts API database is used for product information. The goal
of this application is to enhance awareness and safety for various dietary needs and monitor
dietary restrictions.

1.2 Project Goals
The application will feature user profiles where individuals can specify their dietary restrictions,
allowing for a customized experience. The goal of the application is to provide users with an
opportunity to scan their purchased products to see if they align with their dietary needs.
Moreover, the application encourages users to find more products that comply with their dietary
restrictions. To enhance engagement, the app will also provide educational content about
different dietary practices and health tips. By offering a user-friendly and informative platform,
this project aims to empower individuals with dietary restrictions, making their shopping
experiences safer, more convenient, and aligning with their health and beliefs.

1.3 Definitions and Acronyms
The following definitions and acronyms are provided in this SRS for proper document
interpretation.

Definitions
Vegan Diet: A diet that avoids consuming any food sourced from animals or use products
derived from animals
Vegetarian Diet: A diet that avoids consuming any meat, but still consists of other products
derived from animals
Dairy-free Diet: A diet that avoids consuming animal milk or any products made from milk

Gluten-free Diet: A diet that avoids consuming gluten, a protein that is commonly found in
grains
Shellfish: Seafood that includes shrimp, crab, lobster, clams, scallops, crayfish, oysters,
and mussels
Acronyms
API: Application Programming Interface - allows two applications to communicate with each
other
UX: User Experience
UI: User Interface

1.4 Assumptions
The assumptions may include technical and user assumptions. Technical assumptions can
include the availability of particular hardware components, compatibility with specific databases
and operating systems, and the existence of required network connectivity. It is assumed that
the user has previous experience with similar technology and familiarity with functions of similar
mobile applications. User assumptions also include that the user has access to an iOS or
Android device.

2.0 Design Constraints

2.1 Environment
There are three environments that should be considered: physical, operational, and deployment.
Regarding the physical environment, the software should comply with the latest version of iOS
and android. In terms of the operational environment, the system should operate best in a
high-speed internet environment with the lowest requirement being 256 kbps to run. For the
deployment environment, the application needs to be deployable on Google Firebase as a cloud
infrastructure to be utilized for database management.

2.2 User Characteristics
The application is intended for users approximately 18 years of age and older, specifically with a
demand to discover if their purchased products comply with a specific dietary need. Users can
be categorized into various groups, such as users who personally have dietary restrictions,
users who know someone with dietary restrictions, users who are curious about specific dietary
restrictions, etc.

2.3 System
The software must integrate with the OpenFoodFacts API for product consumption services.
The data from OpenFoodFacts will be used in the Google Firebase database along with
additional consumer data. The implementation of a RESTful API is necessary to extract the data
from the Google Firebase database.

2.4 Assumptions and Dependencies
There exists a few assumptions, such as technical and user assumptions. Technical
assumptions consist of the availability of specific hardware components, compatibility with
particular databases and operating systems, and the presence of required network connectivity.
User assumptions involve the user having prior experience with similar technology and
familiarity with functions of similar mobile applications. It is also assumed that the user has
access to an iOS or Android device.

2.5 General Constraints
Physical, operational, and deployment environments that should all be considered. In regards to
the physical environment, the software should be in compliance with the latest version of iOS
and android. For the operational environment, the system should operate best in a high-speed
internet environment that has the lowest requirement of 256 kbps to run. Furthermore, in terms
of the deployment environment constraints, the application must be deployable on Google
Firebase as a cloud infrastructure to be used for data storage and retrieval from
OpenFoodFacts API.
The application’s target audience is users approximately 18 years of age and older, particularly
those with a demand to seek information about whether their purchased products comply with a
specific dietary need(s) or not. In terms of categorization, distinct groups of users include those
who personally have dietary restrictions, users who know others that have dietary restrictions,
users who are seeking more knowledge regarding specific dietary restrictions, etc.
Regarding system constraints, the software needs to integrate with the OpenFoodFacts API for
product consumption services. The data from OpenFoodFacts will be utilized in the Google
Firebase database, in addition to further consumer data.

2.6 Goals and Guidelines
One main goal of the design of the application includes quick information retrieval from
OpenFoodFacts API. Other aims pertaining to the speed are low latency for users of the
application and maintaining scalability with the addition of multiple users on the
application at one time. Priorities also include creating an application that is both
user-friendly and intuitive to use. Moreover, guidelines for the development of the
application include creating a product that works, looks, and feels like an existing
product. Lastly, another objective is that the application has a strong demand among
potential users and the intended audience.

2.7 Development Methods
The methods used for the software design process will be the Waterfall and Prototyping
method. The waterfall method is a software development method of completing tasks in
sequential phases. The phases consist of requirements, design, implementation,
verification, and maintenance. This method makes the development process easy to
execute since it establishes clear requirements and goals. In the prototyping method,
the goal is to create a usable and working prototype that can be tested before the actual
development begins. With this method, we can identify any potential issues early on and
receive valuable feedback to produce a high-quality application.

3.0 Functional Requirements

3.1 Phase 1
3.1.1 Login and Register

After opening the app, the user is prompted to register for security concerns. It will be
required to sign up using their email and password or through OAuth from different
providers such as Google, Facebook, Apple, etc.

3.1.1 Questionnaire
After the login/register page, the user will be prompted to complete a questionnaire
about which dietary restrictions apply to them. This information will be automatically
updated to the user’s profile, which they will be able to modify later within the user profile
page.

3.1.2 Display Home Page with Scan
When signed into the app, the user is presented with the home page. The primary
section of the home page will be the barcode scanner that can be utilized by the user for
scanning a food item. This scanner will be seen in the middle of the page and will take
up most of the space. The navigation bar at the bottom of the screen will contain a
history button, a scan button, and a user profile button. Since the scanner is the home
page and the home page is the first page displayed, the user will be on the scan option
of the navigation bar.

3.1.3 Barcode Scanning
Access to the user’s camera will be required. A pop-up will show up when the app
requests access to the users’ camera. Users should be able to use the camera function
to scan barcodes of different products to identify additional information.

3.1.4 Navigate from Home Page to Data Pop-up After Scanning
After scanning the item, the user will see a pop-up that displays the information
regarding the product. This page will display the scanned product’s title, nutrition
information, a message about if the product complies with the user’s dietary restrictions
based on their profile, the product image from the database, and recommendations for
similar products that comply with the user’s restrictions in cases where the current
product does not comply. Furthermore, the recommended similar products will be
displayed at the bottom of the pop-up.

3.1.5 Navigation Bar
The navigation bar previously mentioned will be displayed at the bottom of the
application. The home page will automatically begin on the scan page since this page is
the home page. The other two options on the navigation are the history button and the
user profile. The history button will be on the bottom left, and the user profile will be on
the bottom right.

3.1.6 Navigate from Home Page to User Profile Page
When users select the button for the user profile on the navigation bar, they will be
prompted to a page that allows users to view and edit their information. Users will have a
profile page with their personalized preferences and changes can be made anytime.
This page will include their name and other personal information and a restrictions

section. This section will have buttons with various dietary restrictions that are
highlighted according to which dietary restrictions apply to the user from the answers of
the questionnaire. On this page, users will be able to see these dietary restrictions
highlighted and can modify them, if needed. This page will also display a section for
access to the camera, where users modify this access.

3.1.7 Navigate from Home Page to Previous History Page
When users select the button on the navigation bar for the previous history, they will be
prompted to a page that users can utilize to view the past previous items. This page will
display the last ten previously scanned items for user convenience.

3.1.8 Machine Learning for Recommendation of Similar Items
Machine learning algorithms will be used to provide users with recommendations to
similar products in cases where the current product does not comply with the selected
dietary restrictions of the user.

3.2 Phase 2
3.2.1 Machine Learning for Compliance Checking

Machine learning will be utilized for ingredient analysis and compliance checking to
classify scans more efficiently.

3.2.2 Additional Menu Options
There will be a favorites section where users can save scans of different products and
an education section providing tips and information on different dietary needs. The
favorites section will allow further convenience for users to have their most common or
liked items in one easy-to-access selection. Moreover, the education section will
advance one of the goals of the application, which is to educate users on various dietary
restrictions.

3.2.2 Notification System
Notifications will be sent to the user periodically to encourage/remind them to return to
the application for further scanning of products and to provide additional educational fun
facts to increase user involvement.

4.0 Non-Functional Requirements

4.1 Performance
The system should be able to run within 5 seconds after opening the app. If multiple users are
using the app concurrently, the system should still be able to run efficiently without slowing down
or crashing. Processes such as loading and retrieving data should occur as quickly as possible.

4.2 Security

The app will have a secure authentication system that requires users to make a username and
password to create their profile. Each user that creates a profile is limited to view the information
that they put into the app. The users are not allowed to access or edit other profiles. In addition,
the app does not share any data with other users.

4.3 Usability
The application will be user-friendly as it will display an intuitive interface that appeals to our
target audience. It will be fully responsive for both iOS and android devices and should deliver a
smooth user experience where the user encounters little to no delays or errors.

4.4 Reliability
The system should be constantly available as long as the user has network connectivity. The
user should be able to consistently open the app without facing any errors. When prompted to
create a user profile, the app should save the information to be available to view and edit. Each
option presented to the user should be constantly available and running properly when selected.
When the user allows the app to access the camera, the barcode scanner should be functioning
properly and reading the barcodes on selected food items.

4.5 Scalability
As more users join the app and make their own profiles, the system should be able to handle
the increasing amount of data without decreasing the overall performance. The system should
allow updates to include new features without causing any problems to the users or reducing
the app’s efficiency.

5.0 External Interface Requirements

5.1 User Interface Requirements
5.1.1 Loading Screen
This is the first interface that the user will see when using MyFoodScan for the first time.

5.1.2 Login Screen
On this screen, there will be the name of the application, the option to either login with
the email and password or login by providers like Google, Facebook, Apple, etc.

5.1.3 Register Screen
In this screen, MyFoodScan will enable users to register. After entering the necessary
information, the user is registered to use the application.

5.1.4 Questionnaire Interface
On this screen, MyFoodScan will allow the user to choose from many dietary restrictions
provided by the application that apply to them. This information will be stored and
automatically updated to the user’s profile.

5.1.5 Main Interface
The interface will contain three screens and one pop-up overlay. All screens/overlay will
have a consistent layout.

5.1.6 Scanner Interface
On this screen, the application shows a scanner overlay, providing visual cues within the
product barcode that should be placed for scanning.

5.1.7 Product Detail Pop-Up Interface
After scanning a product, the user will have a screen pop-up showing the product image,
name, and contains allergens section. Underneath, the screen contains a list of dietary
restrictions that comply with the user’s preferences. In terms of the messages about if
the product complies with the user’s dietary restrictions, the user’s dietary restrictions
that do not comply, if any, will be prioritized to the top of the list of dietary restrictions
listed, and they will be listed with an “x” next to them. Next, the user’s dietary restrictions
that do comply, if any, will be followed, but the font will be grayed out since the
information has less of a priority compared to the user finding out that the product does
not comply with a certain restriction. These will be listed with a check next to them.
Below that will be a section where similar product recommendations that’ll be provided to
the users.

5.1.8 View History
The screen will present a list of the last ten previously scanned items. This screen will
display these products and their images in a two-columns list.

5.1.9 Show/Edit Profile
In this screen, a user can see their name, information, profile photo, and settings to
change information or profile photo. Additionally, users will be able to change their
dietary restrictions and access the camera.

5.2 Software Interface Requirements
For database services, the application will use the latest version of Google Firebase. The
application will also run the Android version above or equal to Red Velvet Cake (version 11) or
iOS version 8 or higher. To access the device’s camera for scanning and interpreting barcodes,
the application will use the React Native library ‘react-native-camera’.

5.3 Communication Interface Requirements
Users will complete the necessary forms to register or login into the MyFoodScan application.
These details i.e. email, and password are encrypted before they are passed on to the
database. Email communication is required if the users forget their password. HTTP protocol is
pertinent with mobile devices in communicating with Google Firebase.

6.0 System Overview

Figure 1 Diagram of Application Overview

Figure 1 above showcases the architectural structure chosen for developing MyFoodScan. The
backend will be responsible for requesting and receiving information from OpenFoodFacts API
that the application will be dependent upon. Furthermore, the frontend development will involve
using React Native as the frontend framework, as it has many comprehensive and
cross-platform capabilities. For the prototype, Canva and Figma will be used. In terms of
backend development, Google Firebase will be used for data storage and retrieval from
OpenFoodFacts API.

7.0 Architectural Strategies

7.1 Choice of Product
After considering several options, we decided to utilize React Native for the frontend
development of MyFoodScan. React Native’s cross platform capability satisfies both users who
may be using other operating systems and provides tools such as libraries that will help support
the development process. The libraries that will be used to develop MyFoodScan are React
Native Camera, React Native Firebase, React Native Scanner, and TailwindCSS. React Native
Camera will provide the app with camera access and will be cooperating with the scanner library
to scan barcodes. TailwindCSS will be used to help with the frontend development. React Native
was also chosen for its main programming language JavaScript due to its functionality and ease
of use. As for the backend, our strategy is to use a Google firebase to securely store user scans

and personal information. In addition, Firebase was also chosen for its real-time database,
query speeds, and compatibility with React Native.

7.2 Reuse of Existing Software Components
Some software components will be reused to implement various parts/features of the system. In
regard to design, many components of the software might be reused, such as the software to
create a button on one page being reused to create a button on a new page, for example.

7.3 Future Plans
There are a few future plans for extending and enhancing the software, such as providing
additional menu options and a notification system. For the additional menu options, we will
extend the software to include two more pages, allowing the navigation bar to include five
options compared to only three. These two new pages will be a favorites page and an education
page. The favorites page will be a section where users can save scans of various products,
allowing further convenience for users to have their most common or liked items in one
easy-to-access selection. The education page will provide a section where users can be
educated on various dietary restrictions, advancing one of the goals of the application.
Moreover, for the notification system, we will enhance the software to include notifications for
users who agree to receive them. These notifications will consist of friendly reminders to users
to return to the application for increased user involvement and engagement, fun facts about
various dietary restrictions to further educate the users, and more.

7.4 User Interface Paradigm
Each page will have several icons the user can interact with through touch gestures to promote
user engagement. The navigation bar provides the user with three options. One icon takes the
user to the scanner, another will take the user to an archive of their previous scans, and the last
icon takes the user to their user profile. Users can edit their own user profile to update their
preferences by selecting different buttons and typing information. In the history page, users can
select the image of their previously scanned item and view information like the name of the
product and the ingredient list.

7.5 Error Detection and Recovery
Errors are inspected in relation to bugs, parts of source code that create undesirable or
unintended results. Jest will be used as the main testing software, as it is commonly used to test
JavaScript projects. Software testing methodologies include performance testing and
end-to-end tests. Performance testing examines the reliability, speed, and responsiveness of the
source code. For end-to-end tests, we will act as the user and test the functionality of the
application to ensure users can navigate the functions as planned. For example, for error
detection, we will act as the user creating an account, scanning a product’s barcode, seeing if
the information regarding if the product aligns with the desired dietary needs is accurate, etc.
For recovery, after completing end-to-end testing and errors are detected, adjustments in the
source code will be made and end-to-end testing will occur again until acting as the user and
navigating all of the functions of the application is finally conducted as planned.

7.6 External Database Management
Firebase Cloud Functions will be used for the external database management of the
OpenFoodFacts API. Cloud Functions is a serverless framework for developing event-driven
applications. Cloud Functions will be used to retrieve the data of the product’s information from
OpenFoodFacts.

7.7 Concurrency and Synchronization
Google Firebase provides concurrency and synchronization for our users with Realtime
Database and Firestore. Both databases use a NoSQL cloud database, which allows data to be
synced and updated at all times. This tool is intended for the user profiles, as we will securely
store each user’s information in an organized collection. Each user will have access to view and
edit their information at any time, even if they have no internet access. If a user wants to edit
their information, Firestore offers data synchronization to provide the user with real-time
updates. Firestore also allows multiple users who create a profile to independently access their
own information concurrently.

8.0 System Architecture

MyFoodScan is intended to handle user interaction, data retrieval, data management,
authentication, and security. The user interface component governs user input, output, and
navigation. The data retrieval component collects and processes food product data from
additional sources, whereas the data management component maintains and manages user
profiles, preferences and historical data. The authentication and security component provides
safe access to the application and user data.

In the application, collaboration among components is key: React Native app interacts with
Firebase Authentication for user registration and sign-in via Frontend and Backend interaction.
Firebase Firestone is the source from which user profiles and preferences are saved and
retrieved. Firebase Cloud Functions receives barcode data from the app and uses it to
communicate with the OpenFoodFacts API. External API and Backend Interaction pertains to
Firebase Cloud. By requesting product data from OpenFoodFacts via API calls and sending the
processed results back to the frontend, Cloud Functions serve as a secure middleman.

According to the Model-View-Controller (MVC) design, the decomposition that was selected
makes it possible to distinguish clearly between client-side and server-side activities. Because
of this division, it is possible to design and update the user interface separately from the
backend functionality. Furthermore, it enables the backend to be scaled separately to meet
dynamic loads, which is crucial for the app’s prospective expansion.

Figure 2 High-Level Architecture Diagram

8.1 Subsystem Architecture
One of the most important components of the application is the ML Recommendation System.
Its main duties include learning, pattern recognition, and data analysis. To comprehend
preferences and dietary constraints, it examines user behavior and product data. The pattern of
the dataset can be used to forecast consumer preferences. The subsystem adapts product
recommendations to each user’s specific dietary needs and keeps learning from user
interactions and makes accurate recommendations over time.

The ML subsystem communicates with the rest of the application. It trains its models using
product information from the OpenFoodFacts API and user profiles from Firebase Firestone.

It works with React Native frontend to seamlessly present recommendations to the user.
Depending on the complexity, the ML recommendation system can be contained within Firebase
Cloud Functions or an alternative ML server.

As a subsystem, ML components need to be flexible and scalable for the app architecture.
Recommendation as a separate subsystem is the best approach because ML tasks are
resource-intensive, having allocation be done to ensure efficient performance.

9.0 Analysis

9.1 Choice of Product
We had two options to consider for the front-end development of our application. The first option
was to use Flutter, an open source framework created by Google that allows developers to
easily create a user interface. Flutter supports cross-platform app development and supports
various platforms, such as iOS and Android. The main programming language used is C and
Dart, which is a language that is optimized to support building UIs. The second option that was
considered is React Native, an open source framework created by Meta Platforms. Similar to
Flutter, React Native supports cross-platform app development and allows developers to create
applications for iOS and Android simultaneously. It also uses various programming languages,
but the main language that will be used is JavaScript. After some consideration, we decided to
use React Native because of its simplicity and familiarity. There are several libraries included in
React Native that can help support the development of the application, such as React Native
Camera, React Native Firebase, React Native Scanner, and TailwindCSS. In addition to using
libraries, React Native also supports Firebase, the database that the application will use.

9.2 Engineering Trade-offs
Performance vs Functionality: The goal is to create an application that contains various usable
features without decreasing the overall performance of the application. The users should be
able to access and use all features on the application without encountering any problems or
delays. To balance both features, the application will prioritize the essential functions the user
needs, such as the barcode scanner. Images can be compressed to reduce the size and
improve the load time. The user interface will be simple and will not have any extra content that
may affect the overall performance.

Security vs Usability: Each user that downloads MyFoodScan will be prompted to create a user
profile for a more enhanced and interactive experience. The application will clearly
communicate what permissions it will need from the user, such as access to the camera. These
permissions can also be revoked by the user at any time. Any errors a user may encounter will
include clear error messages to help them understand what happened.

Customization vs Standardization: MyFoodScan will give the users customization options to
provide a more personalized user experience. However, it is also important to keep the interface
simple and intuitive to prevent any confusion. When users set up their own profile, they are
given the option to select their dietary restrictions and update their preferences, including their

notification settings and camera access permission. This personalization tailors the application
towards the user, but the general functionality of the application should be the same for each
user.

9.3 Coding Guidelines and Conventions
When using React Native, it is important to follow the standard coding guidelines to ensure
readability. consistency, and maintainability. This includes using the proper naming conventions
and organizing all files in folders. Comment documentation in code can help with readability and
allows everyone to understand the purpose of each piece of code. Some commenting
conventions that can be implemented are placing comments on separate lines and only using it
when necessary to keep the code visually clean and organized. Since the main platforms for
this application are iOS and Android, it is also important to follow the guidelines and best
practices for both platforms. The guidelines that will be followed for iOS devices can be found in
the Human Interface Guidelines by Apple Developers. The guidelines for Android can be found
in Material Design for Android by Android Developers.

10.0 System Design

10.1 Frontend Module
10.1.1 Home Page

The home page of the application consists of sign in and sign up options. One of the
displayed options will be to sign up/in manually. This option allows users to manually set
a username and password which is securely stored in the firebase database after
authentication. The second option asks users if they want to sign in with a Social Login.
This feature allows users to access new applications or websites using their existing
login information from social networking services (Google, Yahoo, etc.) thus simplifying
the registration and authentication.

10.1.2 Scanner
Upon passing the home sign-in page and account setup (if first time user), the
MyFoodScan application will directly then go to the scanning page. The scanner will be
centered on the navigation menu and centered on the user profile and history. Scans
will operate by importing the barcode scanner library and linking the native code. A
permissions configuration will also be implemented to request camera access from
users. Once an item is scanned, the app then makes a call to the OpenFoodFacts API
for database matching.

10.1.3 User Profile
The user profile page displays comprehensive personal information provided by users.
Name, date of birth, email, phone number, dietary preferences, and a logout option will
be displayed here. If users wish to update their email or phone number, they will undergo
a verification process to ensure secure authentication of the new information.

10.1.4 History Page
The history page displays a list of the past ten previous items that the user scanned.
This list will be displayed in a 2-column grid layout. Each product is showcased with an
image and title of the product. In the corner of each product’s display box, either a check
will be shown if the product does align with their current dietary needs or an “x” will be
shown if the product does not. This format will allow for the convenience of users to
quickly access the previous items they have scanned and also to see if the product does
or does not fit into their personalized diet.

10.1.5 Product Details
After the successful scanning of a product, the app transitions to the product details
page, where users are presented with comprehensive information sourced from the
OpenFoodFacts database. The page will display an image of the product and below that
a note of ingredient information. After the image and ingredients, there is a box that
displays if the scanned food follows dietary restrictions. “x” if it is not and a checkmark if
it is compliant. Below that will contain the recommendations, showing users similar
products that are compliant or other options if they are not compliant.

10.2 Backend Module
10.2.1 Firebase Authentication

This service will handle both manual sign-ups/sign-ins and social logins. For manual
authentication, it stores and manages user credentials (username and password). For
social logins, it integrates with various social networking services like Google and Yahoo,
enabling users to sign in with their existing accounts.

Manual Authentication Process:When a user chooses to sign up/in manually, the
backend will validate against the Firebase Authentication system. After successful
authentication, the user is granted access to the application

Social Login Process: The backend will utilize OAuth protocols to authenticate users
via their social media accounts ensuring a secure exchange of user data between social
platforms and the application.

10.2.2 Firebase Firestore
The NoSQL database will store and manage user profiles with their personal
information, and the history of scanned products. Firestore offers real-time data across
user devices, ensuring that users have access to their data anytime.

User profile management: Firestore will be used to create, update, and delete user
profile information. When a user updates their email or phone number, the verification
process will be triggered to authenticate the new information before updating.
History Management: The application will store the history of the last ten scanned
items in Firestore. Each entry will include the product image, title, and dietary alignment
status (check or “x”), allowing users to view previously scanned products.

10.2.3 Firebase Cloud Functions
These functions will serve as backend logic for the application, handling operations that
are triggered by app events or HTTP requests. The functions interact with the
OpenFoodFacts API to fetch details after scanning.

Product Lookup:When users scan a product, a Firebase cloud function will be
triggered to make a call to the OpenFoodFacts API, retrieve the product details, and
return the information to the frontend.

Compliance Check: Another set of cloud functions will analyze the product details
against the user’s dietary preferences to determine compliance (represented by a check
or “x”).

10.3 External API Integration
10.3.1 OpenFoodFacts API

The integration process involves making HTTP requests to the OpenFoodFacts API,
parsing the return data, and then utilizing this data to enhance the user experience by
providing detailed product information and dietary compliance insights. Upon receiving a
response from the OpenFoodFacts API, the backend function parses the JSON data to
extract the relevant product details.

10.4 Detailed Subsystem Design
The recommendation system is an important content-based subsystem that tailors food product
recommendations to individual dietary choice and limits. During initialization, the system
distinguishes between new and returning users. New users must complete a registration
process in which they provide their dietary preferences and restrictions,
allowing the system to develop a personalized user profile. Existing users just log in, and their
existing profiles are used to guide the recommendation process.

The algorithm, which filters and ranks food items from the database depending on the user’s
dietary profile. This algorithm evaluates nutritional facts and ingredients, ensuring that they meet
the user’s dietary requirements. It also learns from prior encounters in order to improve its
accuracy over time. When users interact with the recommendations-via acceptance or rejection,
the system collects the feedback and dynamically updates user profiles.

The feedback loop is critical to the system’s iterative design, allowing the recommendation
engine to continuously enhance the customization of the system’s suggestions. Every user
interaction provides a chance for learning, ensuring that recommendations are tailored to user’s
changing preferences and constraints. The content-based strategy was purposefully designed
to satisfy specific dietary demands while stressing user privacy and tailored health concerns.

Figure 3 Overview of Recommendation System

11.0 Prototype Design

11.1 Design Process
Our design process consisted of planning, low-fidelity prototyping, and high fidelity prototyping.
This section aims to show the development of our app from the initial idea to the final design, as
well as discussing our thoughts behind each decision.

11.1.1 Planning
The goal of this project is to create a user-friendly application that lets users scan any food item
while they are shopping. We wanted to focus on simplicity and functionality while making the
application visually appealing. This stage consisted of discussing what each page will contain
and how the contents will be organized.

11.1.2 Low-Fidelity Prototyping
For this stage, we began by sketching a story-board of how each page is connected to each
other, followed by rough sketches of the page layouts. Afterwards, we utilized Figma to create
the low-fidelity prototype. We began creating each page in order of how the app flows, starting
with the loading page, the sign-up page, and the home page. While creating the prototype, we
mainly focused on creating a clean and simple layout that a user can understand without
needing any instructions. We had several discussions regarding different components for each
page, including the shapes of the buttons and text bars and what we wanted the layout to look
like. Overall, we kept the layout straightforward and familiar to what many users have seen
before with other applications, like keeping the login and sign up page in the same format many
other applications use.

Figure 4 Low-Fidelity Prototype

11.1.3 High-Fidelity Prototyping
Figure 5 showcases the transition between each page of the application. Starting from the
Loading Page, users are prompted to the Login Page where returning users can login to their
account. If the user is a new user, they can click the “Sign Up” button, and they will be prompted
to the Create Account Page where they can make a new account. If the user wishes to return to

the Login Page from the Create Account Page (ie. if they already have an account), they can
return to the Login Page, as well, by clicking the “Log In” button. Once a new user creates an
account, they are prompted to the Questionnaire Page, where they are asked to select all of the
listed dietary restrictions that apply to them. Once the user clicks the “Continue” button, they will
be prompted to the Home Page (Scanner Page). Similarly, the returning users who login will be
prompted to the Home Page (Scanner Page), as well. Once users are prompted to the Home
Page (Scanner Page), they will be able to see the Navigation Bar at the bottom. They can use
this Navigation Bar to transition between all three pages: Home Page (Scanner Page), History
Page, and Profile Page. On the Home Page (Scanner Page), users can scan any item’s
barcode. Once the scanner processes the barcode, the Product Details Pop-Up will be
displayed on the screen, where users can learn more about the product. When users are done
reading the information about the product, they can either slide down on the pop-up from the top
or simply click the “X” button. Since the user was previously on the Home Page (Scanner Page),
they will then be returned to the Home Page (Scanner Page) after doing so. Additionally, if a
user transitions to the History Page using the Navigation Bar, they will be able to see their
previously scanned items. If they click on one of these items, the Product Details Pop-Up will be
displayed on the screen again, in which they can exit this pop-up by either sliding down on the
pop-up from the top or simply clicking the “X” button, just the same as before. However, since
they entered the pop-up from the History Page, they will be redirected back to the History Page.

Figure 5 High Fidelity Prototype (Flow Diagram)

12.0 Development

12.1 Major Components of Technology:
For the development stage of the mobile app, React Native was used as the JavaScript-based
open-source UI software framework of the app. The various pre-built components and libraries
offered from React Native were also implemented in the development process. Expo Go, an
open-source sandbox, was also used in the development of the app to experiment with React
Native. Expo Go was used in the coding stage to act as a simulation to preview the app in
real-time during the development process. For the following pages, both React Native and Expo
Go were implemented.

12.1.1 Register Page/ Login Page
The development of the register and login pages involved the use of Firebase Firestore
and Firebase Authentication. Firebase Firestore was used to store the user’s
information, such as their first name, last name, and email. Firebase Authentication was
used for a secure authentication system. This includes enabling authentication using
passwords and providers such as Google, Apple, and Facebook.

12.1.2 Questionnaire Page
The questionnaire page was developed with the purpose of asking the user to select
which of the following dietary restrictions apply to them, along with the option to also
select a button indicating none of the options apply. This option was set as a conditional
to empty if the user decides to select the button that none of the restrictions apply.

12.1.3 Scanner/Home Page
React Native Camera is a library within React Native that allows the application to
access a mobile device’s camera. The camera will refer to the OpenFoodFacts API
whenever the barcode of a product has been scanned to extract the necessary
information. This information will then be organized and transferred to another page for
the user to view on screen.

12.1.4 Product Details Pop-Up
The details pop-up is what appears after the scanner has been utilized and referred to
the OpenFoodFacts API. The pop-up will detail all relative information from the API in
order of image URL, ingredients, pass/fail, detailed checklist of restrictions relative to the
user, and a recommendation of “ similar products “.

12.1.5 History Page
Firestore database is utilized to store each user's previously scanned product scans.
Each scan will be saved as a document that includes the product's name, image URL,
scan timestamp, and compatibility with the user's dietary choices, as obtained via the
OpenFoodFacts API. Last Recently Used (LRU) cache is applied to keep only the 10
most recent scans in the database. This entails developing a Firebase Cloud Function
that is activated when new documents are added to the Firestore history collection.

Using React Native components like FlatList, these scans are displayed dynamically,
showing the product image, name, and an icon that indicates dietary compatibility (a
check mark or x mark). This setup ensures the interface is user-friendly and informative,
automatically updating to reflect the latest scans and their compatibility with dietary
restrictions.

12.1.6 Profile Page
Firestore and Firebase Authentication store the information that is displayed on the
profile page. Firestore saves the user’s first and last name and their preferences.
Firebase Authentication sets and stores the user’s email and the password. Using the
method in Firebase Authentication, passwords can be reset by sending the user a
password reset email. For the implementation of allowing the user to upload a profile
picture, the Expo Image-Picker library was used due to its compatibility with Expo Go.

12.2 Issues Encountered:
During the development phase, a few issues pertaining to each page were encountered. The
following list of pages explains these issues.

12.2.1 Questionnaire Page
The main issue with the questionnaire page is once the user selects their dietary
restrictions, this information is not automatically updated to the user’s profile as
intended.

12.2.2 Scanner/Home Page
The first issue with the Scanner page was the barcode scanning function which was
depreciated. We resorted to just using the React and Expo camera and developed a
function that looks at and reads barcodes.

12.2.3 Product Details Pop-Up
The main issue with the pop up is placing key information (photos and ingredients).
Other crucial issues with the pop up are checking compliance with the profile
preferences and the recommendation system.

12.2.4 History Page
An issue in the history page is the asynchronous nature of data updates and rendering in
React Native, along with the real-time data flow from Firestore. The LRU process is
causing a delay or inconsistency in showing the updated list of scanned products
immediately after new scans are added or old scans are discarded. This issue shows as
a user seeing outdated information or seeing a momentary flicker while the list updates,
leading to bad user experience.

12.2.5 Profile Page
One issue from the profile page was the automatic update of the user’s select dietary
restrictions from the questionnaire page to the profile page. In other words, even though
the user can also change and select their dietary restrictions on the profile page similar
to the questionnaire, their responses from the questionnaire were not saved. We have
currently been unable to resolve this issue. Another issue encountered on the profile
page was the implementation of the user adding a profile picture. Due to the limitations
of using the React Native Image-Picker library with Expo Go for live testing, issues
pertaining to grabbing a user’s image from their device were encountered. Switching
from React Native Image-Picker library to Expo Image-Picker library enabled the
success for the implementation of the user adding a profile image. This is because the
Expo Image-Picker library is more compatible with Expo Go than the React Native
Image-Picker library. Hence, we were able to resolve this issue that was encountered.

13.0 Testing

13.1 Testing the Software
Before launching the application, it is important to ensure that the application is able to function
properly. There are several testing methods and tools that will be used to test the application. A
tool that will help determine the performance of the application is Jest, a framework that tests
JavaScript projects. This will help determine the overall performance of the application. A testing
method that will be used is functional testing, which tests the functions in the application to
ensure that they perform the tasks that were previously specified. Afterwards, performance
testing can be executed to examine the overall performance of the application such as
scalability, speed, and reliability.

13.2 Maintaining the Software
The corrective software maintenance method will be followed to maintain the software of the
application. When an error occurs in the software, the problem must be addressed and solved
as quickly as possible. This can also be enforced by taking in feedback from users who
download the application. Whenever the user encounters an error, we can take their feedback to
fix the errors. The feedback can also be used to further improve the application by taking in
suggestions from the users. However, the current goal is to track any bugs or issues and solve
them as quickly as possible before the users encounter them. The maintenance method is
subject to change in the future as the application improves overtime.

13.3 Functional Testing
Functional testing involves testing the mobile app’s processes against each of the previously
listed functional requirements. The goal of functional testing is to observe whether each of the
functional specifications were successful or not. The following is a list of the functional
requirements that were tested.

● Login and Register
● Questionnaire

● Display Home Page with Scan
● Barcode Scanning
● Navigate from Home Page to Data Pop-up After Scanning
● Navigation Bar
● Navigate from Home Page to User Profile Page
● Profile Page
● Navigate from Home Page to Previous History Page
● History Page
● Machine Learning for Recommendation of Similar Items

13.4 Non-Functional Testing
Non-functional testing pertains to testing of the app’s processes against each of the previously
mentioned non-functional requirements. These non-functional specifications are requirements
that contribute to the user’s experience. The following lists the non-functional requirements,
which were tested to see if each passed or failed the testing phase.

● Performance
● Security
● Usability
● Reliability
● Scalability

Functional Requirement Pass/Fail

Login and Register Pass

Questionnaire Pass

Display Home Page with Scan Pass

Barcode Scanning Pass

Navigate from Home to Pop-Up Pass

Navigation Bar Pass

Navigate from Home to Profile Pass

Profile Page Fail

Navigate from Home to History Pass

History Page Pass

Recommendation of Similar
Products

Fail

13.5 UI/UX Testing
The UI/UX testing involves testing the application to ensure that the overall user interface is
functional. The goal of this test is to confirm that each component on a page works and is
organized properly. The following chart demonstrates the different pages checked to determine
if the components pass or fail.

Non-Functional Requirement Pass/Fail

Performance Pass

Security Pass

Usability Pass

Reliability Pass

Scalability Pass

UI/UX Requirement Pass/Fail

Login and Register Pass

Questionnaire Pass

Home Page with Scan Pass

Pop-Up Pass

Navigation Bar Pass

Profile Page Pass

History Page Pass

14.0 Version Control
We created and will maintain and utilize a Github account for the Sr. Project; where all code and
document versions are submitted.

Github Link: https://github.com/Indy009

15.0 Conclusion
In conclusion, due to the increasing demand for personalized dietary management, this project
involved creating an advanced food scanning application, catering to common personalized
diets such as vegan, vegetarian, dairy-free, and more.

The application features user profiles for individuals to create their own personalized diet
account. When users want to know if certain items are in compliance with their diet, they can
use the application’s scanner to scan the barcode of the item, serving queries to the
OpenFoodFacts API. Machine Learning was also utilized to recommend to the user similar
products of the items scanned that are in compliance with their dietary restrictions. Lastly, users
can also view the history page to see their previously scanned items and their profile page to
update their customizable dietary information.

React Native and Expo Go were chosen for the front-end development of the app due to their
comprehensive and cross-platform benefits. The React Native Camera was utilized to connect
to the OpenFoodFacts API for product scanning. Additionally, Canva and Figma were used for
UX/UI prototyping, allowing for a user-friendly design. Google Firebase was used for the
backend development due to its smooth compatibility with React Native. Google Firestore,
Authentication, Cloud storage, Cloud functions, and Machine Learning purposes were all
accomplished by using Google Firebase. Lastly, the implementation of Machine Learning
algorithms played a vital role in the image recognition and analysis aspect of the application,
ensuring accurate product scanning and analysis.

16.0 Glossary
OpenFoodFacts: a database containing information about food products, such as the products’
ingredients, allergens, nutrition information, etc.
Google Firebase: a backend cloud computing service that allows for mobile app development
Model-View-Controller (MVC) pattern: a software design pattern that arranges an application’s
logic three interconnected layers

Appendix A

Project Overview
In response to the growing need for personalized dietary management, this project proposes the
development of an advanced food/snack scanning application. The application will utilize
cutting-edge image recognition and AI technology to analyze food products and identify their

https://github.com/Indy009

compliance with various dietary restrictions such as kosher, Halal, vegan, vegetarian, and any
allergen-specific needs.

Additionally, the application will feature user profiles where individuals can specify their dietary
restrictions, allowing for a customized experience. To enhance engagement, the app will also
use a recommendation algorithm to provide users with similar products that follow their dietary
needs. The process will involve scanning the barcodes of the user’s purchased food items,
which will serve queries to the OpenFoodFacts API, providing the user with all the necessary
information. Moreover, the application will conveniently store the user’s previous scans to
provide a concise user archive and prevent redundancy.

For the front-end development of the app, React Native is chosen for its comprehensive and
cross-platform capabilities. Additionally, Canva and Figma are going to be utilized for UX/UI
prototyping, ensuring a user-friendly design. In terms of backend development, Node.js will be
used, particularly for its smooth compatibility with React Native. Lastly, the implementation of
Machine Learning algorithms is crucial for the image recognition and analysis component of the
application, ensuring accurate product scanning and analysis.

Features:
Phase 1:

● Barcode Scanning: Simplifying the process of identifying products.
● User Profile: Personalizing based on individual dietary needs.
● Saved Items: History of previously scanned items.
● Recommendation for Similar Items: Items that are in compliance with the user's specific

dietary needs.

Phase 2:

● Machine Learning: Utilizing image recognition for ingredient analysis and compliance
checking.

Final Deliverables:
1. Final Report
2. Software files
3. Website
4. Final Video Presentation

Milestone Events (Prototypes, Draft Reports, Code Reviews, etc.):
#1 - By Feb 4th

● SRS and SDD

#2 – By March 17th

● Develop prototype

#3 – By March 31st

● Prototype presentations
● Peer reviews

#4 – By April 7th

● Review Draft of Final Report

#5 – By April 21st

● Product presentations

Meeting Schedule Date/Time
F2F Meeting on Monday around 11am – 2pm

Thursdays and Fridays on MS Teams at approximately 2pm – 4pm.

Collaboration and Communication Plan
Communication – Teams, Cellphones (Call/Text)

Collaboration- Teams, In-person

Version Control- GitHub

Project Schedule and Task Planning

Version Control Plan
We created and will maintain and utilize a Github account for the Sr. Project; where all code and
document versions are submitted.

Github Link: https://github.com/Indy009

Appendix B

Training:
STATEMENT OF COMPLETION

By signing below, I, Ibrahima Gueye, acknowledge that I completed the React Native tutorial.

Signed by:

______ Ibrahima Gueye _______________________ _____4/26/2024_______

Team Member 1 Date

STATEMENT OF COMPLETION

By signing below, I, Jedae Lisbon, acknowledge that I completed the React Native tutorial.

Signed by:

______ Jedae Lisbon _______________________ _____4/26/2024_______

Team Member 2 Date

STATEMENT OF COMPLETION

By signing below, I, Brianna Noel, acknowledge that I completed the React Native tutorial.

Signed by:

______ Brianna Noel _______________________ _____4/26/2024_______

Team Member 3 Date

STATEMENT OF COMPLETION

By signing below, I, Victoria Kuswita, acknowledge that I completed the React Native tutorial.

Signed by:

______ Victoria Kuswita_______________________ _____4/26/2024_______

Team Member 4 Date

https://github.com/Indy009

